3.422 \(\int \frac{\tan ^4(e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=116 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{a^{3/2} f}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{b^{3/2} f}-\frac{(a+b) \tan (e+f x)}{a b f \sqrt{a+b \tan ^2(e+f x)+b}} \]

[Out]

ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]/(a^(3/2)*f) + ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqr
t[a + b + b*Tan[e + f*x]^2]]/(b^(3/2)*f) - ((a + b)*Tan[e + f*x])/(a*b*f*Sqrt[a + b + b*Tan[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.249025, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {4141, 1975, 470, 523, 217, 206, 377, 203} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{a^{3/2} f}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{b^{3/2} f}-\frac{(a+b) \tan (e+f x)}{a b f \sqrt{a+b \tan ^2(e+f x)+b}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]/(a^(3/2)*f) + ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqr
t[a + b + b*Tan[e + f*x]^2]]/(b^(3/2)*f) - ((a + b)*Tan[e + f*x])/(a*b*f*Sqrt[a + b + b*Tan[e + f*x]^2])

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(a*e^(2
*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c - a*d)*(p + 1)), x] + Dist[e^(2
*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) +
(a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tan ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (1+x^2\right ) \left (a+b \left (1+x^2\right )\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (1+x^2\right ) \left (a+b+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{(a+b) \tan (e+f x)}{a b f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{a+b+a x^2}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{a b f}\\ &=-\frac{(a+b) \tan (e+f x)}{a b f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{a f}+\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{b f}\\ &=-\frac{(a+b) \tan (e+f x)}{a b f \sqrt{a+b+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{a f}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{b f}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{a^{3/2} f}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{b^{3/2} f}-\frac{(a+b) \tan (e+f x)}{a b f \sqrt{a+b+b \tan ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 4.69041, size = 201, normalized size = 1.73 \[ \frac{\sec ^3(e+f x) (a \cos (2 e+2 f x)+a+2 b)^{3/2} \left (\frac{b \tan ^{-1}\left (\frac{\sqrt{a} \sin (e+f x)}{\sqrt{-a \sin ^2(e+f x)+a+b}}\right )}{\sqrt{a}}+\frac{a \tanh ^{-1}\left (\frac{\sqrt{b} \sin (e+f x)}{\sqrt{-a \sin ^2(e+f x)+a+b}}\right )}{\sqrt{b}}\right )}{2 \sqrt{2} a b f \left (a+b \sec ^2(e+f x)\right )^{3/2}}-\frac{(a+b) \tan (e+f x) \sec ^2(e+f x) (a \cos (2 (e+f x))+a+2 b)}{2 a b f \left (a+b \sec ^2(e+f x)\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

(((b*ArcTan[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]])/Sqrt[a] + (a*ArcTanh[(Sqrt[b]*Sin[e + f*x]
)/Sqrt[a + b - a*Sin[e + f*x]^2]])/Sqrt[b])*(a + 2*b + a*Cos[2*e + 2*f*x])^(3/2)*Sec[e + f*x]^3)/(2*Sqrt[2]*a*
b*f*(a + b*Sec[e + f*x]^2)^(3/2)) - ((a + b)*(a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^2*Tan[e + f*x])/(2*a*
b*f*(a + b*Sec[e + f*x]^2)^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.529, size = 2662, normalized size = 23. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x)

[Out]

-1/2/f/b^(3/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/a*(2*2^(1/2)*sin(f*x+e)*cos(f*x+e)^2*(1/(a+b)*(I*cos(f*
x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b
^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)
+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^(3/2
)*a-4*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)
*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)*cos(f*x+e)^2
*b^(3/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)
+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*2^(1/2)*a+2*2^(1
/2)*sin(f*x+e)*cos(f*x+e)^2*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*
x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*E
llipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)
*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^(1/2)*a^2-4*2^(1/2)*sin(f*x+e)*cos(f*x+e)^2*(1/(a+b)*(I*cos(f*x+e)*a
^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)
-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)
/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1
/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b^(1/2)*a^2+2*2^(1/2)*sin(f*x+e)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/
2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*c
os(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e
),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^(5/2)-4*(1/(a+b)*(I*cos(f*x+e)*a
^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)
-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*sin(f*x+e)*b^(5/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a
^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+
b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*2^(1/2)+2*2^(1/2)*sin(f*x+e)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)
*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(
1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))
^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^(3/2)*a-4*2^(1/2
)*sin(f*x+e)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-
2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+c
os(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)
*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b^(3/2)*a-sin(f*x+e)*cos(f*x+e)^2*((b+a*co
s(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*arctanh(1/8*b^(1/2)*4^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*4^(1/2)-2*cos(f*x+
e)-4^(1/2)-2)/sin(f*x+e)^2/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2
)*a^2+sin(f*x+e)*cos(f*x+e)^2*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*arctanh(1/4*b^(1/2)*(-1+cos(f*x+e))*
(cos(f*x+e)*4^(1/2)-2*cos(f*x+e)-4^(1/2)-2)/sin(f*x+e)^2/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2))*((2*I*a^
(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2+2*cos(f*x+e)^3*b^(3/2)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a+2*cos(f*x
+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^(1/2)*a^2-2*cos(f*x+e)^2*b^(3/2)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a
+b))^(1/2)*a+2*cos(f*x+e)*b^(5/2)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)-sin(f*x+e)*((b+a*cos(f*x+e)^2)/(1+co
s(f*x+e))^2)^(1/2)*arctanh(1/8*b^(1/2)*4^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*4^(1/2)-2*cos(f*x+e)-4^(1/2)-2)/sin
(f*x+e)^2/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+sin(f*x+e)*
((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*arctanh(1/4*b^(1/2)*(-1+cos(f*x+e))*(cos(f*x+e)*4^(1/2)-2*cos(f*x+
e)-4^(1/2)-2)/sin(f*x+e)^2/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2
)*a*b-2*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^(1/2)*a^2+2*cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-
b)/(a+b))^(1/2)*b^(3/2)*a-2*b^(5/2)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)-2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b)
)^(1/2)*b^(3/2)*a)*sin(f*x+e)/(-1+cos(f*x+e))/cos(f*x+e)^3/((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )^{4}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(tan(f*x + e)^4/(b*sec(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 2.31401, size = 3985, normalized size = 34.35 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(8*(a^2*b + a*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) + (a*b^2*cos(f*
x + e)^2 + b^3)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b
+ 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a
*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*
b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f
*x + e)^2)*sin(f*x + e)) - 2*(a^3*cos(f*x + e)^2 + a^2*b)*sqrt(b)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*
(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)
/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4))/(a^3*b^2*f*cos(f*x + e)^2 + a^2*b^3*f), -1/8*(8*(a^2*b
 + a*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - 4*(a^3*cos(f*x + e)^2 + a^2*
b)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f
*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e))) + (a*b^2*cos(f*x + e)^2 + b^3)*sqrt(-a)*log(128*a^4*cos(
f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^
3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x
+ e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*
a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)))/(a^3*b^2*f*cos(
f*x + e)^2 + a^2*b^3*f), -1/4*(4*(a^2*b + a*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(
f*x + e) + (a*b^2*cos(f*x + e)^2 + b^3)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^
3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)
^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) - (a^3*cos(f*x + e)^2 + a^2*b)*sqrt(b)*log
(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x
+ e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4))/(a^3*b^2*f*co
s(f*x + e)^2 + a^2*b^3*f), -1/4*(4*(a^2*b + a*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*si
n(f*x + e) + (a*b^2*cos(f*x + e)^2 + b^3)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e
)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x +
e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) - 2*(a^3*cos(f*x + e)^2 + a^2*b)*sqrt(-b
)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)
/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e))))/(a^3*b^2*f*cos(f*x + e)^2 + a^2*b^3*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{4}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**4/(a+b*sec(f*x+e)**2)**(3/2),x)

[Out]

Integral(tan(e + f*x)**4/(a + b*sec(e + f*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )^{4}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^4/(b*sec(f*x + e)^2 + a)^(3/2), x)